
Real-time gait control for partially immersed bipeds

Samuel Carensac∗, Nicolas Pronost, Saida Bouakaz
University Claude Bernard Lyon 1, LIRIS

Figure 1: We propose a physics-based controller able to simulate the walk of partially immersed characters. Our controller provides robust
balancing, gait style adaptation to the environment and precise speed tracking. In this figure, we observe that the swing foot gets near the
water surface before the character starts moving forward.

Abstract

Physics-based animation is an increasingly studied subject of com-
puter animation because it allows natural interactions with the vir-
tual environment. Though some existing motion controllers can
handle the simulation of interactions between a character and a liq-
uid, only few methods focus on the simulation of the locomotion of
immersed bipeds. In this paper, we present a control strategy capa-
ble of simulating partially immersed gaits. The impact of the liquid
on the character’s motion is modeled through simple hydrodynam-
ics. To produce natural looking animations, we design a controller
allowing the combination of multiple gait styles, the conservation
of balance through intelligent foot placement and precise control
of the character’s speed. We determine the optimal parameters for
the controller by using an optimization process. This optimization
is repeated for several scenarios where the character has to walk
across a volume of liquid parametrized by its height. Our con-
troller produces natural looking gaits while being capable of online
adaptation to the variation of liquid height, to the modification of
the liquid density and viscosity and to the variation of the required
character’s speed.

CR Categories: I.3.3 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

Keywords: Virtual Human, Physics-based animation, Motion con-
trol, Real-time liquid interaction, Offline optimization

1 Introduction

Simulating realistic human motion is a key step in creating vir-
tual environments. Over the years, these environments have be-
come increasingly diverse and complex with a large number of

∗e-mail:samuel.carensac@gmail.com

elements that can influence the motion of a virtual character. In
those cases, physics-based animation is preferred over kinematic
animation since it does not need a series of exact position for each
possible interaction. With this increasing complexity, it is diffi-
cult to achieve realistic interactions between animated characters
and the environment using kinematics-based approaches. Physics-
based animation uses physical phenomena (forces and torques) to
manipulate the character. This allows the creation of a motion that
will be directly impacted by the environment. A growing num-
ber of contributions are now working on building controllers using
simulated physics [Geijtenbeek and Pronost 2012]. Although they
inherently allow obtaining interactions with the environment, the
manipulation of the character becomes more complex as no direct
control over the position of the limbs of the animated characters is
possible.

The main challenge of a controller is to allow high level
parametrization of the system. For example, these high level pa-
rameters may be the character’s speed, the direction of displace-
ment or the motion style. The need to simulate a large number
of motion styles (walking, running, jumping...) makes creating a
generic controller extremely challenging. Similarly, the mastery
of multiple interactions with the environment also increases con-
siderably the complexity of the system. This is why the existing
controllers focus on the study of a limited number of motion styles
at a time and interactions with the environment [Geijtenbeek and
Pronost 2012]. We focused on the control of walking in partial im-
mersion in a liquid. Our objective was to define and implement
the necessary mechanisms to a physics-based controller to allow
real-time animation of a virtual character interacting with a liquid.
Our controller is capable of great freedom of gait style and precise
tracking of the character’s motion speed.

The remainder of this paper is structured as follows. Section 2 re-
views previous works. Then in section 3, we give an overview of
our system. Sections 4 to 7 describe the tools used in the imple-
mented system. Section 8 illustrates a variety of results, provides
discussions and gives the limits of our method. In section 9, we
summarize our approach and highlight future areas of work.

2 Previous works

Numerous works on control of virtual characters with simulated
physics can be found in the literature [Geijtenbeek and Pronost
2012]. Among those works, some share common characteristics
with our objectives.

Our work share some features of the SIMBICON (SIMple BIped
CONtroler) [Yin et al. 2007] and associated works. Among them,
[Coros et al. 2009] propose a system integrating multiple con-
trollers for navigation tasks. The drawback is that the system is
designed to use optimization to determine how the different con-
trollers should be used. To enable the use of low gains in the PD-
controllers, different methods have been used such as a feedforward
system [Yin et al. 2007] or the computation of torques to compen-
sate the effect of gravity [Coros et al. 2010].

Balance control is one of the key systems in physics-based simula-
tion. For instance in [Yin et al. 2007], secondary PD-controllers are
placed on the key joints (stance ankle and swing hip) to dynamically
adapt the tracked positions. One way to compute a balance aware
foot placement during walk motion is to use an Inverted Pendulum
Model (IPM) [Coros et al. 2010; Kajita et al. 2001]. This model can
be used to dynamically compute the trajectory of the swing foot but
it limits the range of possible gait styles. Other works use motion
captured data to ensure the realism of the character motion when
recovering from a loss of balance [Shiratori et al. 2009].

Velocity control is often one of the required characteristics of
physics-based controllers. Some systems are capable of adapting
to online variations of the target velocity. In [Coros et al. 2009],
multiple controllers are combined for specific motions as forward
and backward walks. The IPM based systems offer an inherent
control though imprecise as it does not consider the observed ve-
locity [Coros et al. 2010]. The use of horizontal virtual forces has
been a way to obtain a precise control of the speed and balance of
the character [Coros et al. 2010; Geijtenbeek et al. 2012]. This sys-
tem is based on secondary PD-controllers to compute the requisite
force. The static gains and constants used in those systems make
them unable to track correctly the target velocity when the charac-
ter is subject to a variable environment (e.g. apparition of a liquid
medium).

Movement in liquids have been studied in both simulation [Yang
et al. 2004; Si et al. 2014] and biomechanics [Barela et al. 2006].
Those works mainly focus either on swimming control or on gait
analysis with high level of immersion, making them unusable in
our scenarios. One can also mention [Lentine et al. 2011] who sim-
ulated human walk under wind forces. Most of those works use
the Navier-Stockes equations to simulate the liquids making them
usually ineffective to obtain real-time and interactive simulations.

To overcome these limitations, we propose a novel controller show-
ing the following characteristics:

• dynamic gait style adaptation by combining multiple refer-
ence controllers

• liquid aware gait styles by specific IPM usage and offline op-
timization

• precise tracking of target velocity by using learning strategies
• real-time interactive simulation by using simple hydrodynam-

ics to simulate the impact of the liquid on the motion

3 System Overview

Our controller consists of five key components that are classified in
three categories (figure 2).

PD
controler

Physics
engine

offline
optimization

Target
pose

Reference
poses

Direct torque generation modules

 External Forces Field
 Compensation4

5 Velocity
 Tuning

Target pose generation modules

2

Spline
trajectories

swing foot
trajectory

Reference Controllers Combiner

3 IP Model

NULL speed
IPM

IPM speed
adaptater

External Forces module

 Liquid simulation1

Figure 2: System overview. (1) influence of liquid through external
forces; (2) a combination of controllers generating the target poses;
(3) an IPM for predictive foot placement; (4) an external force-field
compensation helping the PD-controller; (5) velocity tuning for fine
corrections of velocity and balance. φ is called the phase, and is
computed by normalizing the current time t since the last footstrike
by the expected step time T : φ = t

T
.

First, we simulate the liquid impact on the character by applying
external forces computed by simple hydrodynamics (drag, friction
and buoyancy) allowing us to obtain real-time interactions between
the liquid and the character (section 4). Our method combines var-
ious controllers, each one defining a gait style depending on the
simulation conditions (e.g. liquid height, target speed), allowing an
adaptive evolution of the gait style (section 5.1). The specified tra-
jectories for the joints composing the swing leg are overridden by
the results of an IPM if the character is in the falling phase of a step
or if the controller detects a loss of balance (section 5.2.1).

We augment the PD-controller with torques computed through an
external force-field compensation. Our system is a extension of
Coros et al.’s gravity compensation mechanism [Coros et al. 2010]
and computes a significant part of the necessary torques (sec-
tion 5.3).

Our controller includes a precise tracking of the target velocity
through an adaptive offset on the swing foot position computed by
the IPM (section 5.2.2). Our system presents an improvement of
Coros et al.’s fine-scale control [Coros et al. 2010] by considering
the intra-step speed variation of the character to compute a more
efficient virtual force (section 5.4).

Finally, we use offline optimization to generate the reference poses
used by the controller combinator. This optimization defines a gait
style specific to a given scenario (section 6).

4 External Forces

Beside the ground reaction forces, the external forces generated in
our system are the forces related to the influence of the liquid on the
character. We consider two forces that are based on hydrodynamics
laws. The first one is buoyancy. We use the well-known equation
FB = −Viρg with Vi the immersed volume of the physics rep-
resentation of the immersed object and ρ the density of the liquid.
The second force is the parasitic drag. We restrict the considered
physics phenomena to the form drag and the skin friction, modeling
the resulting force FD using the following equation:

FD =
1

2
ρv2AnCd × µ

where Cd is the drag coefficient, ρ the fluid density, An the cross
sectional area and v the relative speed to the fluid. Due to the com-
plexity of dynamically computing Cd, we set it to 1.0 (average
value for a man). µ is a coefficient representing the fluid viscos-
ity allowing us a rough representation of the friction. The velocity
varying through the limbs, we use a sampling of the surface of each
limb and compute the parasitic drag for each element individually.
The computation of the cross sectional area An and the immersion
test are both directly realized on each element.

5 Control Framework

Our system is built on the version of SIMBICON presented
in [Coros et al. 2010]. The trajectories for the ankles, pelvis, back
and head are specified in the coordinate system of the character.
This coordinate system is orthonormal, where the z-axis is the sagit-
tal axis of the character, the x-axis is the coronal axis of the char-
acter and the y-axis points to the ground. The trajectories for the
shoulders, elbows, toes and the knee of the stance leg are specified
using local joint coordinates. Unlike [Coros et al. 2010], we allow
the user to specify the swing foot trajectory.

5.1 Reference Controllers Combiner

The goal of the Controllers Combiner is to observe dynamic varia-
tions of the gait style depending on the conditions of the simulation
(e.g. liquid height). Following [Coros et al. 2009], our Controllers
Combiner is built on multiple reference controllers that are specific
to one set of conditions. Even though we limit the conditions to the
walking speed and the liquid height, our system could handle other
specifications. Each reference controller defines the trajectories for
the joints that exhibit significant variations from one standard con-
troller. For example, our standard controller is a forward walking
controller. It specifies that the heel hits the ground before the toes
do. To walk backward, the user has to specify a reference controller
stating that the toes hit the ground before the heel and affect it a neg-
ative sagittal speed. Our reference controllers differ from the ones
used by [Coros et al. 2009] by two characteristics. First, we do not
require each individual controller to produce a stable motion. In
our system, the balance is acquired by the use of an IPM. Second,
each individual controller only specifies the joints where the vari-
ation from the standard controller is significant. Additionally, our
system does not require any optimization step to find the optimal
combination of the reference controllers. Instead, when the charac-
ter ends a step, the system will compute a new trajectory for each
joint. Those trajectories are obtained by a square-law interpolation
between the two nearest reference controllers. For example, given
n reference controllers, we will use the two reference trajectories fi
and fi+1 defined for the speeds Vi and Vi+1 to compute the target
trajectories f :

f = fi ∗ (1−Ri) + fi+1 ∗Ri with 0 ≤ i ≤ n

and

Ri =

(
Vd−Vi

Vi+1−Vi

)2

if ∃i : Vi < Vd < Vi+1

R0 = 0

Rn = 1

The same formula is applied to adapt the gait style to the liquid
height where the speeds are remplaced by heights.

5.2 Inverted Pendulum Model

We use an Inverted Pendulum Model (IPM) supposing constant leg
length and zero target velocity similar to the one used in [Coros
et al. 2010]. We have modified this model to allow the specification

of previously impossible gait styles and to enable a better tracking
of the user’s target velocity.

5.2.1 Specific IPM Usage

Our idea to enable the specification of new gait style is that the IPM
does not need to control the swing foot during the whole step. We
only need to control the position of the swing foot when the char-
acter is in a falling state, meaning when the vertical speed of the
center of mass is positive VCOM > 0. During a step, the falling
phase corresponds to the end of the step. So during the first part
of the step we will use a user defined trajectory for the swing foot.
This allows the observation of vertical movement of the swing foot
without any horizontal movement, which was previously impossi-
ble. This kind of gait style is important in our scenarios as it is
typical of a character trying to minimize the drag from moving in a
liquid (Figure 1).

5.2.2 IPM Results Alteration

The IPM computes the position of the next footstrike so that the
character should have a zero velocity when reaching the maximum
height during the next step. To have a partial control of the ve-
locity, [Coros et al. 2010] use a linear modification of IPM results
depending on the target character velocity (∆(x, z) = −αVd). Un-
fortunately it only works properly near the velocity for which the
linear factor has been optimized. In particular, this system cannot
handle the transition from an environment with a fluid medium to
an unconstrained one.

Our solution is to add a supplementary offset ∆(x, z)i to the results
of the IPM. This offset will be modified at the end of each step s
depending on the difference between the current character velocity
and the target velocity ∆(x, z)s = ∆(x, z)s−1 + β(V − Vd) with
β a positive constant. The swing foot position from the IP model
PIPM (x, z) will therefore be modified as follows:

P (x, z) = PIPM (x, z)− αVd + ∆(x, z)s

5.3 External Force Fields Compensator

Our External Force Fields Compensator is an extension of the grav-
ity compensation proposed in [Coros et al. 2010]. The goal is to
dynamically compute a part of the necessary torques at each joint
thus permitting the use of lower gains in the main PD-controller.
Using virtual forces opposing the external force fields affecting the
character gives us a good estimation of these torques. The exter-
nal forces that we consider are the weight P = mg of each body
part of the character and buoyancy FB = −ρVi. To prevent time
consuming computation resulting from the application of numerous
small virtual forces (depending on the precision of the sampling),
we chose to ignore the liquid drag in the compensator. So the final
virtual force applied to each body part is:

F = −mg + ρVi

5.4 Velocity Tuning

In [Coros et al. 2010], the controller applies a horizontal virtual
force to the center of mass to obtain a fine control of the speed and
balance. Our version presents three major differences.

Articuled chain. Instead of considering one chain that goes from the
head to the stance foot our system preconises two chains: the first
goes from the pelvis to the stance foot and the second only contains
the joint between the pelvis and the torso. This modification comes

We repeat the process
until we reach a

stable state

intermediary learning curve

Initial learning
curve

Final learning
curveOffset

we store the
velocity observed
 during the step

1 We adapt the learning
curve toward the observed

curve

2

We update the offset
depending on the average

speed of the last step

3

Observed velocity

Figure 3: Process of learning the required velocity curve

from the following two considerations. First, we do not consider
the head in the top chain because we do not want the character to
tilt the head to control its velocity. Secondly, we separate the torso
from the lower body to prevent the character from applying a large
torque on the ankle when tilting the torso is enough.

Limbs mass impact. Applying small torques on joints that control
the heavier limbs gives a more natural motion than applying impor-
tant torques to minor joints. Considering this rule we have modified
our Jacobian matrix so it takes into account the massMi of each in-
dividual limb:

JT
n (p) =

1

M

∑
0<i≤n

((Pi(x, y, z)− Pi−1(x, y, z)) ∗Mi)

where M is the sum of the limbs’ mass considered in the velocity
tuning, Pi(x, y, z) the position of the i joint and P0(x, y, z) the
application point of the virtual force.

Intra-step velocity variations. In most cases, the velocity is not
constant during a step. In most gait styles the character is faster at
the start and end of a step than near the middle of it. Supposing it
constant as in [Coros et al. 2010] may cause the apparition of unde-
sired behaviors where the controller requests the character to slow
down at the start of the step, then speed up near the middle of it,
and to slow down once again at heel strike. To limit this issue, we
use a system to learn the target velocity at each instant of a step that
is needed to produce a virtual force as constant as possible. This
constant virtual force would result in the character moving at the
global target velocity. The learning velocity curve is defined by k
key points uniformly distributed. The values between those points
are computed using Catmull-Rom splines. Our tests have shown
that a value of k = 11 gives enough precision without being too
time consuming. The learning method is based on an iterative prin-
ciple (see figure 3). During a step we record the velocity of the
center of mass of the character. When the step ends, we check if the
average variation ∆avg between the learning velocity curve and the
velocity curve observed during the step fobs is lower than a thresh-
old. If so, we move each reference point of the learning velocity
curve towards the values read in the observed velocity curve. To
help converging without oscillations, we limit the maximum varia-
tion that can be affected to each key point to the average variation
∆avg . To control the velocity of the character we maintain an offset
Koff for each curve that will be added when reading the values. At
the end of each step we add the observed error Err = Vd − Vobs

to the offset. So, at the end of the step s, each key point fs(i) is
computed with the following equation:

{
fs(i) = (fs−1(i) +min(∆avg, fobs(i)− fs−1(i)))

Koff (s) = Koff (s− 1) + (Vd − Vobs) ∗Kevo speed
(1)

With Kevo speed a coefficient set to 1.0 for the sagittal axis and to
0.2 for the coronal axis. If the average variation ∆avg is above the

threshold it means the character is not in a stable motion anymore.
In that case, we stop adapting our learning curve and switch to the
use of recovery steps. This means the controller will then ignore the
user specified swing foot trajectory and use the trajectory defined by
the IPM for the totality of the step. The controller stays in recovery
mode until the average variation between the observed speed and
the specified one is lower than the threshold. If it takes more than
five steps we reset the learning curve to the constant target value
and we start learning again.

6 Offline Optimization

The reference controllers used as entry in our controller are given
by the user to define the walking gait of the character. In our case
we chose to generate them by using an offline optimisation. The
goal of the offline optimization is to find the optimal parameters of
our controller for a given scenario (target character’s sagittal speed
and liquid height). The considered parameters are the 51 key points
for the trajectory of the following elements: pelvis, lower back joint
(L1 vertebrae), stance ankle, swing ankle, stance knee, swing foot.

6.1 Objective function

During our optimization we use the following evaluation function:

feval =
∑
t<k

(ηfenerg + βfdrag + γfacc) ∗

(1 + 0.1 ∗Ripm alt) + fspeed + fbalance

(2)

where k is the duration in seconds of the evaluation. This function
can be separated in two parts, each one composed of three func-
tions. The first part corresponds to the sum and defines the charac-
teristics of the motion that we want to observe once the optimization
is complete. We use a weighted sum of three functions, each one
defining a specific behavior:

• Minimization of consumed energy (fenerg). The goal of this
function is to obtain a motion using the minimum energy pos-
sible. This property is measured by the sum of norm of the
torques at every joint: fenerg =

∑
i
||τi||

• Minimization of the drag. (fdrag). Using this function, the
character tries to move out of the liquid and we prevent ve-
locity spikes within the liquid. We evaluate this property by
using the sum of the torques induced by the drag forces on
the parent joint of the limb where the drag forces Fj are ap-
plied: fenerg =

∑
i

∑
j((Pj(x, y, z) − Pi(x, y, z)) × Fj)

with Pj(x, y, z) the force application point and Pi(x, y, z)
the position of the parent joint.

• Minimization of angular acceleration (facc). The goal of
this function is to obtain smooth motions. We estimate the

smoothness from the sum of the square of the angular accel-
erations weigthed by the mass of the corresponding limb in
the reference poses θ̈di and in the resulting motion θ̈i. We use
two coefficients to favor minimizing the accelerations of the
actual motion: facc =

∑
i
Mi ∗ (0.25 ∗ θ̈d

2

i + 0.75 ∗ θ̈2
i)

The second part of the evaluation function consists of functions lim-
iting the search space:

• Penalization of IPM alteration (Ripm alt). The IPM alteration
system is of great influence on the resulting motion. Even
with reference poses defined to walk backward our system
could succeed in walking forward if asked. To prevent this
kind of situations, we penalize simulations heavily relying on
the IPM alterations. To do so, we use the ratio between the
IPM alteration required to obtain a stable motion (∆(x, z))
and its maximum thresholdmax(∆(x, z)) (0.09 in our tests):
Ripm alt = ∆(x,z)

max(∆(x,z))

• Velocity tracking (fspeed). The goal of this function is to elim-
inate the simulations where the convergence to the target ve-
locity takes is too long (possibly due to unsuitable reference
trajectories). We use a high penalization value if the error on
the velocity tracking is superior to 1% of the target velocity:
if ||V − Vd|| > 0.01 ∗ ||Vd|| then fspeed = 1010

• Motion balance (fbalance). With this function, we verify if we
have a stable motion by refusing simulations using recovery
steps. If the system uses at least one recovery step, a high
penalization value is given: fbalance = 1015

6.2 Optimization strategy

Our fitness landscape presents many local minimums. As sev-
eral physics-based animation systems [Geijtenbeek et al. 2012;
Tan et al. 2011], we use a Covariance Matrix Adaptation
(CMA) [Hansen 2006] to explore it.

7 Implementation

The physics engine used is Open Dynamics Engine (ODE). The
simulation step size is 5× 10−4s. The human model used is com-
posed of 28 degrees of freedom, see [Coros et al. 2009] for more
details. Collisions between the character’s limbs are not consid-
ered. The gains of the PD-controller are kept constant through the
simulation, and are the same as in the forward walking controller
of [Coros et al. 2009]. Joint torques are limited to |τ | < 200Nm
for the hips and knees and |τ | < 100Nm for the other joints. The
simulations are performed with a single-thread implementation on
a common laptop with 8GB RAM and a 2.5GHz i5 processor. The
controller proposed in this section as been build using a liquid with
characteristics similar to water: ρ = 1000kg.m−3 and µ = 1.
To compute the drag on any body part, we use elements around
0.02cm × 0.02cm. The reference controller used to initialise the
optimisations is the one used by [Yin et al. 2007] to obtain a forward
walk.

8 Results

All the results are best seen in the accompanying video.

8.1 Offline Optimization

We report here the impact of the three main criteria in the evaluation
function:

• The minimization of consumed energy leads to steps keeping
the swing foot near the ground in absence of water. When
partially immersed, the character keeps the swing foot low
but elevates it a bit higher to align the foot with the direction
of the foot’s velocity.

• The minimization of the liquid drag leads to motions keeping
the foot outside the water as long as possible until the water
height is too high to do so (the limit is a bit above 0.5m which
correspond to the knee height). It is interesting to note that
the character uses a lateral movement to get the foot out of
the water as fast as possible but it does not strike as natural
looking.

• The minimization of angular accelerations leads to smooth
motions keeping the swing foot near the ground with any wa-
ter height but which prevents the character to recover from
external pushes.

We experimented on the weights of the evaluation function, among
which the two configurations (η = 2, β = 8, γ = 1) and (4,5,1).
The first one of the two provoked the apparition of unnatural lateral
displacements of the swing foot similar to our observations of the
fdrag criteria. The second led to movements that would choose to
stay underwater even for quite low water heights (under the knee).
Finally, we have chosen to use the weights (3,6,1) to build our final
controller. This combination leads to motions significantly influ-
enced by the water height while keeping a natural looking move-
ment. With these weights, we have created 10 reference controllers
which will be interpolated by the reference controller comibiner
(section 5.1) to obtain a continous space for the reference poses. We
have two sets of reference controllers corresponding to the charac-
ter’s speeds 0.3m.s−1 and 0.7m.s−1. Each set contains one con-
troller for each of the five following water heights: 0, 0.25, 0.5,
0.75 and 1 meter. Each optimization step has been realized with
the following stages: 10 gait steps to stabilize the motion, then five
seconds for the evaluation. The optimization of a set of five liquid
heights for one speed took around 9 hours.

8.2 Experiments on the final controller

Our controller allows online modification of the character’s target
velocity. It is also possible to change the step width during move-
ment. The controller is able to adapt to water height (figure 4) as
well as changes to the liquid’s physics properties (density and vis-
cosity). Our system is able to withstand external forces simulated
through solid balls of 5kg projected onto the character (figure 4
bottom). All the simulations respect the real-time condition with a
minimum of 27 fps when the water reaches the hips.

Figure 4 illustrates some of the results. The first two rows show that
the character adapts the height of the swing foot to reach the water
height. The third row illustrates the case where the water height is
too high and the character keeps the swing foot near the ground.
The bottom row illustrates the character’s recovery after an impact
from a 5kg ball moving at 5.4m.s−1. As we can see, numerous
steps are necessary to return to a stable velocity. The controller ob-
tained by the presented optimization can precisely track any target
sagittal speed from 0.2m.s−1 to 0.8m.s−1 under any water height
and 1.0m.s−1 if the water height is lower than the knees. The fol-
lowing tests have been realized for a 0.6m.s−1 forward walk. The
range of coronal speeds that can be achieved goes from−0.1m.s−1

to 0.1m.s−1 under any water height and −0.2m.s−1 to 0.2m.s−1

if the water height is lower than the knees. The controller can adapt
to liquids with a density up to 1.5 times the density of water and
three times the viscosity of water (i.e. µ < 3.0). The character is
robust to external pushes up to 5kg balls moving at 6m.s−1.

-0,3

-0,25

-0,2

-0,15

-0,1

-0,05

0

0,05

0,1

0,15

0,2

-5 0 5 10 15

de
vi

at
io

n
fr

om
 d

es
ir

ed

ve
lo

ci
ty

step number (0 being the first step after impact)

coronal

sagittal

Figure 4: Results obtained with our final controller. From top to
bottom: character walking in 25cm, 50cm and 75cm of water. Bot-
tom: character recovering from an external push, left: impact im-
age, right: curves for the velocity deviation from the target velocity
observed after impact. The character is moving at 0.6m.s−1 in all
the presented situations with no coronal speed.

8.3 Discussions

In this work, we have focused on obtaining real-time simulations
over having an extensive realism. Our controller could benefit from
a more realistic water model that would still comply with the real-
time constraint. Our system still uses a static threshold to detect the
need for recovery steps instead of using an adaptive value depend-
ing on if the velocity learning has been completed or not. Using
experimental results should be a correct solution to identify how
the threshold should be adapted. For now, the control of the foot
contact with the ground is solely obtained through the specification
of the reference poses. We have observed that many unstable gaits
were caused by a contact between the ground and only a part of the
stance foot (lateral or sagittal edges). This problem could be solved
by adding a local feedback control on the stance ankle to ensure a
full contact. Our system presents some difficulties to reach the tar-
get coronal velocities especially if the desired variation is sudden.
This is most likely caused by the fact that we need two learning
velocity curves for the coronal axis. Adding a learning system with
direct impact of the evolution of one curve on the other could be a
possible solution.

9 Conclusion

We have presented a physics-based controller capable of real-time
interactive simulation of walking motions for partially immersed
bipeds. We have demonstrated online adaptation of the gait style to
external conditions such as the liquid height and target character’s
velocity. Our controller permits the specification of new gait styles
specific to walking motions in a liquid medium.

Our controller could be extended by implementing a more realistic

liquid model which could consider the perturbations of the liquid
caused by the character. Adding other mediums (e.g. snow-like
mediums) or movement types (e.g. standing still, running) with
possible online transition between them are also interesting works
we would like to investigate. Working on a non rigid model for
the feet would improve the controller as well by bringing more ad-
vanced balance strategies and more realistic interactions between a
virtual human and its environment.

References

BARELA, A. M., STOLF, S. F., AND DUARTE, M. 2006. Biome-
chanical characteristics of adults walking in shallow water and
on land. Journal of Electromyography and Kinesiology 16, 3,
250–256.

COROS, S., BEAUDOIN, P., AND VAN DE PANNE, M. 2009. Ro-
bust task-based control policies for physics-based characters. In
ACM Transactions on Graphics (TOG), vol. 28, ACM, 170.

COROS, S., BEAUDOIN, P., AND VAN DE PANNE, M. 2010. Gen-
eralized biped walking control. In ACM Transactions on Graph-
ics (TOG), vol. 29, ACM, 130.

GEIJTENBEEK, T., AND PRONOST, N. 2012. Interactive charac-
ter animation using simulated physics: A state-of-the-art review.
In Computer Graphics Forum, vol. 31, Wiley Online Library,
2492–2515.

GEIJTENBEEK, T., PRONOST, N., AND VAN DER STAPPEN, A. F.
2012. Simple data-driven control for simulated bipeds. In Pro-
ceedings of the ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, Eurographics Association, 211–219.

HANSEN, N. 2006. The cma evolution strategy: a comparing re-
view. In Towards a new evolutionary computation. Springer, 75–
102.

KAJITA, S., KANEHIRO, F., KANEKO, K., YOKOI, K., AND
HIRUKAWA, H. 2001. The 3d linear inverted pendulum mode: A
simple modeling for a biped walking pattern generation. In Intel-
ligent Robots and Systems, 2001. Proceedings. 2001 IEEE/RSJ
International Conference on, vol. 1, IEEE, 239–246.

LENTINE, M., GRETARSSON, J. T., SCHROEDER, C.,
ROBINSON-MOSHER, A., AND FEDKIW, R. 2011. Creature
control in a fluid environment. Visualization and Computer
Graphics, IEEE Transactions on 17, 5, 682–693.

SHIRATORI, T., COLEY, B., CHAM, R., AND HODGINS, J. K.
2009. Simulating balance recovery responses to trips based
on biomechanical principles. In Proceedings of the 2009 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation,
ACM, 37–46.

SI, W., LEE, S.-H., SIFAKIS, E., AND TERZOPOULOS, D. 2014.
Realistic biomechanical simulation and control of human swim-
ming. ACM Transactions on Graphics (TOG) 34, 1, 10.

TAN, J., GU, Y., TURK, G., AND LIU, C. K. 2011. Articulated
swimming creatures. In ACM Transactions on Graphics (TOG),
vol. 30, ACM, 58.

YANG, P.-F., LASZLO, J., AND SINGH, K. 2004. Layered dy-
namic control for interactive character swimming. In Proceed-
ings of the 2004 ACM SIGGRAPH/Eurographics symposium on
Computer animation, Eurographics Association, 39–47.

YIN, K., LOKEN, K., AND VAN DE PANNE, M. 2007. Simbi-
con: Simple biped locomotion control. In ACM Transactions on
Graphics (TOG), vol. 26, ACM, 105.

